

Bilan GES de la production de poulet de chair

BUUk062: Bilan de GES et stratégies climatiques

► Languetin Didier, novembre 2021

Ferme Le Grand'Joie

- Domaine de 22 ha situé à Granges dans la Broye.
- Production d'environ 2000 poulets par année. Il s'agit de petites productions en series d'environ 200 à 400 poulets. Environ 10 series par années.
- Utilisation d'aliments cultivé en Suisse exclusivement (orge, triticale, maïs et poids ou autre légumineuse).
- Vente directe uniquement à la ferme.

Autres activités

- Activité agricole avec une production essentiellement d'orge et de poids.
- Production de fruits et petits fruits (59 variétés de fruits), avec l'esprit de travailler avec des vairétés résistantes nécessitant pas ou peu de traitements.

Sources des émissions de GES

Bilan carbone — Calcul selon AgriClimateChange Tool (ACCT)

Consommation

Eau (abreuvoir poulet): ACCT

Electricité: La production utilise 2489 kWh (ventilation, congélateur, lumière, infrarouge)

Taux de conversion: 128 g CO2-eg/kWh (Strommix Schweiz 2018)

Transport:

Poussin

Poulet

Aliment

Production

Aliment

Poulet

poussin

Chauffage de la halle (gaz): 24° uniquement de mars à mai et octobre – novembre.

Conditionnement: préparation + emballage

Calculs pour l'électricité et l'eau

- Consommation éléctrique: 2489 kWh/année
- → ACCT: 128 g CO2-eq/kWh (Strommix Schweiz 2018)
- → 2489 kWh = 2489 * 128 = **318 592 g CO2-eq.**
- Consommation d'eau: 25m3/année
- → ACCT: 1m3 = 4,8 MJ
- → 1kWh = 3.6 MJ \Leftrightarrow 1 MJ = 0,278 kWh
- → 25 m3 d'eau = 25 * 4,8 * 0,278 = 33,36 kWh
- → Avec 128 g CO2-eq/kWh (Strommix Schweiz 2018)
- → On a: 33,36 * 128 = 4270,08 g CO2-eq.

Calculs pour les transports

- Transport de poussins: en fourgon (10x/année) 140km
- Transport des poulets pour abattage: camionnette (10x) 200 km
- ► Transport de l'aliment: livraison par camion 25t (1x) 28km
- Donnée BAFU: diesel = 3,15 t CO2 / t diesel (2,645 kg/L, densité 0,845)

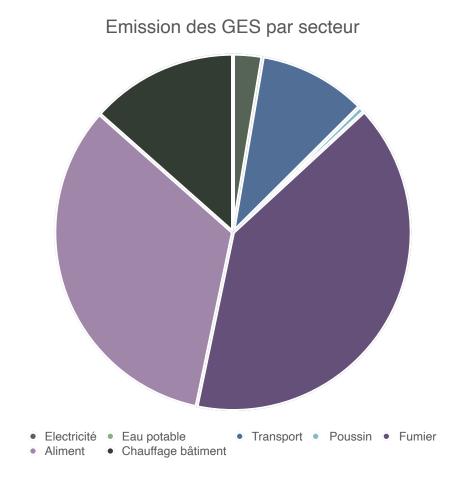
Consommation:

- → Fourgon: 10L/100km (10 trajets)
- → Camionnette 22m3: 15L/100km (10 trajets)
- → Camion: 30L/100km (1 trajet)

Qté de diesel consommée: 10*1,4*10 + 15*2*10+ 30*0.28 = **448,4 L**

→ Quantité de CO2: 448,4L * 2,645 = 1186 kg CO2

Calculs pour les poulets


- Achat de poussin selon ACCT: 2200 poussins = 73 kg eq-CO2
- Fumier: émission de 0,117 kg CH4/poulet/année (Agroscope (Bretscher 2013))
- → Conversion (ACCT): 1t CH4 ⇔ 25t CO2
- → 2200 poulets/année mais pas de production de janvier à mars
- → 2200 * 9/12 * 0,117 * 25 = **4826 kg eq-CO2**
- Aliment: 18t d'aliments (granulés) par année
- → ACCT: 18t d'aliments «granulé à base de maïs et céréales» = 4t eq-CO2

Calcul du chauffage du bâtiment

- Chauffage de la halle uniquement octobre-novembre et avril-mai entre 21-24°C.
- Estimation de 110kwh/m2/an pour ce bâtiment, dont je prends la moitié car il ne chauffe pas les 3 mois les plus froids de l'année.
- Consommation (valeur estimée): 55kWh/m2/an.
- → Surface du bâtiment 230m2
- → Consommation annuelle chauffage: 55 * 230 = 12650 kWh
- → Bilan carbone: 12650 * 128 = 1'619.2 kg eq-CO2

- (https://www.energie-environnement.ch/economiser-le-chauffage/situer-sa-consommation-de-chauffage)
- (https://heero.fr/prime-eco-energie/eco-chauffage/consommation-dun-chauffage-electrique/consommation-moyenne-chauffage-par-kwh-au-m2/)

Bilan des émissions des GES par secteur

	Tonnes CO2	%
Electricité	0,318	2,6
Eau potable	0,004	0,0
Transport	1,186	9,9
Poussin	0,073	0,6
Fumier	4,826	40,1
Aliment	4	33,3
Chauffage bâtiment	1,619	13,5
Total	12,026	,

Bilan global

Nous avons obtenu un total de 12,026t de CO2 pour la production de 2200 poulets qui représentent une masse de 5t de chair.

==> Ce qui nous donne une émission de 2,4kg de CO2 par kg de poulet!

Aliment	Impact kg CO2eq/kg "net" (mangeable)
Veau (conventionnel)	37
Boeuf	34,5
Brebis	17,9
Poule de réforme - en cage	17,8
Poule de réforme - au sol	8,33
Poule de réforme, plein air	8,18
Poule de réforme, bio	7,88
Porc - bio	7,14
Dinde - label rouge	6,5
Dinde - conventionnel	4,69
Poulet - Label rouge	4,54
Porc - conventionnel	4,9
Canard	4,09
Lapin (conventionnel, en cage)	4,4
Porc - label rouge/plein air	4,3
Poulet - bio	3,5
Poulet - conventionnel	3,03
Oeuf bio (pour comparer)	1,69

Bilan global

- Nous n'avons pas tenu compte de l'énergie utilisée pour l'abattage et le conditionnement du poulet.
- L'énergie de chauffage est une estimation (probablement très optimiste)
- Ne tient pas compte de la mortalité des poulets.

Mesures visant à réduire les émissions

- Les plus grosses émissions sont réalisées avec l'aliments ainsi que les émissions dues au fumier, totalisant Presque les ¾ des émissions de CO2.
- → Capter les gaz dans le poulailler et le valoriser (bioréacteurs). Très cher à mettre en place. Il faudrait une association avec d'autres producteurs.
- → Utiliser des aliments avec un circuit court, donc de production locale et durable afin de limiter son emprunte.